Reciprocal Salt Flux Growth of LiFePO4 Single Crystals with Controlled Defect Concentrations
نویسندگان
چکیده
Improved methods for the flux growth of single crystals of the important battery material LiFePO4 have been developed, allowing the facile preparation of single crystals up to 1 cm across with well-developed facets at relatively low temperatures. The structural characterization of these samples by both powder X-ray diffraction and single crystal diffraction (X-ray and neutron) indicates that the samples are typically stoichiometric with a very low concentration of Fe defects on the Li site, though crystals with larger concentrations of defects can be specifically grown using Fe-rich fluxes. These defects occur through the formation of a Fe-rich (Li1−2xFex)FePO4 partial solid solution, in contrast to the antisite defects more commonly discussed in the literature which would preserve the ideal LiFePO4 stoichiometry. The LiFePO4 defects are shown to be sarcopside-like (2 Li + → Fe + vacancy) based on compositions refined from single crystal diffraction data, the observed dependence of unit cell parameters on defect concentration, and their observed phase behavior (defects only appear in growths from fluxes which are Ferich relative to stoichiometric LiFePO4). The distribution of defects has been studied by aberration corrected scanning transmission electron microscopy and was found to be highly inhomogenous, suggesting that defect-containing crystals may consist of endotaxial intergrowths of olivine LiFePO4 and sarcopside Fe3(PO4)2 in a manner that minimizes the detrimental influence of FeLi defects on the rate of Li-ion transport within crystallites.
منابع مشابه
LiFePO4: from single crystals to nanostructures
Batteries based on the light, small and very electropositive element lithium are undoubtedly significant devices for our technology-based society. Among the materials of interest, FePO4 is one of the most important materials in this context. On discharging it transforms to LiFePO4 which can be reversibly delithiated on charging. Unlike electronic devices not only electronic carriers are relevan...
متن کاملEffect of impurities on the optical properties of KTP single crystals grown from flux
In the present work, KTP crystals have been grown by spontaneous nucleation technique in flux medium using K6P4O13 flux. 0.4-1 °C/h cooling rates were applied in the spontaneous nucleation process. The presence and amount of impurities has been determined by using XRF. The optical transmission spectra of impure KTP crystals in the UV–visible region are discussed. The transmission cut-off is cle...
متن کاملRapid growth of large, defect-free colloidal crystals
We demonstrate controlled growth of face-centered cubic (FCC), monodisperse hard-sphere colloidal crystals by centrifugation at up to 3000g onto FCC (100) templates. Such rapid deposition rates often result in an amorphous sediment. Surprisingly, however, growth onto (100) templates results only in single crystals with few or no extended defects. By contrast, deposition onto flat, (111), or (11...
متن کاملSynthesis of Porous and Micro-sized LiFePO4/C by a Two- step Crystallization Process and Its Application to Cathode Material in Li-ion Batteries
LiFePO4 with an ordered olivine structure has been recognized as a promising cathode material for advanced Li-ion batteries due to its excellent thermal and structural stability, low cost of starting materials, high reversibility of Li ion insertionextraction, and non-toxicity . However, its practical application has suffered from the inherently poor kinetic properties caused by the low electro...
متن کاملCOMPUTATIONAL ENUMERATION OF POINT DEFECT CLUSTERS IN DOUBLE- LATTICE CRYSTALS
The cluster representation matrices have already been successfully used to enumerate close-packed vacancy clusters in all single-lattice crystals [I, 2]. Point defect clusters in double-lattice crystals may have identical geometry but are distinct due to unique atomic postions enclosing them. The method of representation matrices is extended to make it applicable to represent and enumerate ...
متن کامل